
0
Copyright Ronald W. Ritchey 2008, All Rights Reserved

SWE 781
Secure Software Design and Programming
Input Validation
Lecture 3

Ron Ritchey, Ph.D.
Chief Scientist

703/377.6704
Ritchey_ronald@bah.com

Copyright Ronald W. Ritchey 2008, All Rights Reserved
1

Schedule (tentative)
Date Subject

Sep 1st Introduction (today) ; Chess/West chapter 1, Wheeler chapters 1,2,3

Sep 8th Computer attack overview

Sep 15th Input Validation; Chess/West chapter 5, Wheeler chapter 5

Sep 22nd Buffer Overflows; Chess/West chapters 6, 7; Wheeler chapter 6

Sep 29th Error Handling; Chess/West chapter 8; Wheeler chapter 9 (9.1, 9.2, 9.3 only)

Oct 6th Privacy, Secrets, and Cryptography; Chess/West chapter 11; Wheeler chapter 11 (11.3, 11.4,
11.5 only)

Oct 13th Columbus Recess

Oct 20th Mid-Term exam

Oct 27th Mid Term Review / Major Assignment Introduction

Nov 3rd Implementing authentication and access control

Nov 10th Web Application Vulnerabilities; Chess/West chapter 9,10

Nov 17th Secure programming best practices / Major Assignment Stage Check ; Chess/West chapter
12; Wheeler chapters 7,8,9,10

Nov 24th Static Code Analysis & Runtime Analysis

Dec 1st The State of the Art (guest lecturer)

Dec 8th TBD (Virtual Machines, Usability [phishing], E-Voting, Privilege Separation, Java Security,
Network Security & Worms)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
2

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Minor Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
3

PHF

  White pages directory service program
  Distributed with NCSA and Apache web servers
  Version up to NCSA/1.5a and apache/1.0.5 vulnerable to an

invalid input attack
  Impact:

•  Un-trusted users can execute arbitrary commands at the privilege
level that the web server is executing at

  Example URL illustrating attack
•  http://webserver/cgi-bin/phf?Qalias=x%0a/bin/cat%20/etc/passwd

Copyright Ronald W. Ritchey 2008, All Rights Reserved
4

PHF Coding problems

  Uses popen command to execute shell command
•  User input is part of the input to the popen command argument

  Does not properly check for invalid user input
•  Attempts to strip out bad characters using the escape_shell_cmd

function but this function is flawed. It does not strip out <new line>
characters.

•  By appending a <new line> plus a shell
command to an input field, and attacker
can get the command executed by the
web server

Copyright Ronald W. Ritchey 2008, All Rights Reserved
5

PHF Code Fragment
 strcpy(commandstr, "/usr/local/bin/ph -m ");
 if (strlen(serverstr)) {
 strcat(commandstr, " -s ");
 escape_shell_cmd(serverstr);
 strcat(commandstr, serverstr);
 strcat(commandstr, " ");
 }
 escape_shell_cmd(typestr);
 strcat(commandstr, typestr);
 if (atleastonereturn) {
 escape_shell_cmd(returnstr);
 strcat(commandstr, returnstr);
 }

 printf("%s%c", commandstr, LF);
 printf("<PRE>%c", LF);

 phfp = popen(commandstr,"r");
 send_fd(phfp, stdout);

 printf("</PRE>%c", LF);

Copyright Ronald W. Ritchey 2008, All Rights Reserved
6

escape_shell_cmd code fragment

void escape_shell_cmd(char *cmd) {

 register int x,y,l;

 l=strlen(cmd);

 for(x=0;cmd[x];x++) {

 if(ind("&;`'\"|*?~<>^()[]{}$\\",cmd[x]) != -1){

 for(y=l+1;y>x;y--

 cmd[y] = cmd[y-1];

 l++; /* length has been increased */

 cmd[x] = '\\';

 x++; /* skip the character */

 }

 }

}

Notice: No %0a or \n character

Copyright Ronald W. Ritchey 2008, All Rights Reserved
7

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Minor Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
8

Some potential sources of input

  Command line
  Environment variables

•  Including PATH

  Files
•  File descriptors
•  Configuration files
•  Temporary Files

  Databases
  Network services
  Registry values
  System properties

Copyright Ronald W. Ritchey 2008, All Rights Reserved
9

Command Line

  Many programs take input from the command line
  If the program runs at the privilege level of the user, there is

not much of a security problem.
  setuid/setgid programs must treat command line arguments as

coming from an untrusted user
  All arguments must be checked including arg0

Copyright Ronald W. Ritchey 2008, All Rights Reserved
10

Arg0

#include <stdio.h>

int main(int argc, char * argv[]) {

 printf(“%s\n”, argv[0]);

 exit(1);

}

gcc -o argtest argtest.c

When run normally

/home/rritchey$ argtest

Argtest

But attacker can change arg0
when calling execl so

execl(“argtest”, “blah”, NULL)

blah

Copyright Ronald W. Ritchey 2008, All Rights Reserved
11

Environment Variables

  Purpose is to maintain general state information
•  e.g. PATH, SHELL, USERNAME

  Normally, inherited from parent process
  Behavior is transitive

•  a secure program might call some other program and, without special
measures, would pass potentially dangerous environment variables
values on to the program it calls

  Calling program can override any environmental settings
passed to called program

Copyright Ronald W. Ritchey 2008, All Rights Reserved
12

Dangerous Env Variables

  Some environment variables are dangerous because many
libraries and programs are controlled by environment variables
in ways that are obscure, subtle, or undocumented

  Example: IFS
•  Used by the sh and bash shell to determine which characters

separate command line arguments
•  If input validation strips out spaces an attacker

could change IFS to something that was
not stripped out (say Q) then create an
input that will pass (rmQ-RQ*)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
13

Path Manipulation

  Path used to set directories to search when a command is
issued
echo $PATH

/sbin:/usr/sbin:/bin:/usr/bin:/usr/X11R6/bin

  Attacker can modify path to search in different directories
 /hackscripts:/sbin:/usr/sbin:/bin:/usr/bin

  If the called program calls an external command, hacker can
replace the command with an alternate program

Copyright Ronald W. Ritchey 2008, All Rights Reserved
14

Path Recommendations

  Basic rule if possible: do not trust the path. Use fully qualified
path names for security sensitive software

  Parse the path and locate the program/file you which to
access. Check to see if it is in an expected location.

  Do not allow the current directory to be specified in the path
•  E.g.: .:/usr/bin:/bin:

Copyright Ronald W. Ritchey 2008, All Rights Reserved
15

Environment Variable Storage

  Environment variables are internally stored as a pointer to an
array of pointers to characters

  Structure maintained by using the
correct library calls e.g. getenv, putenv

PTR

PTR

PTR

PTR

S H E L L = / b i n / s h NIL

H I S T S I Z E = 1 0 0 0 NIL

H O M E = r o o t NIL

L A N G = e n NIL

NIL

ENV

Copyright Ronald W. Ritchey 2008, All Rights Reserved
16

Environmental Variable Storage

  Attacks do not have to play by the rules and can create
“impossible” environmental variables

  A program might check a value (to see if it's valid) but actually
use a different one

PTR

PTR

S H E L L = / b i n / s h NIL

NIL

ENV

S H E L L = / h a c k / s NIL h

Copyright Ronald W. Ritchey 2008, All Rights Reserved
17

Env Recommendations

For Setuid or otherwise privileged code
  Determine set of required environmental variables
  On startup, erase all non-essential environmental variables
  Check the format and content of remaining variables

Copyright Ronald W. Ritchey 2008, All Rights Reserved
18

File Descriptors

  Hold references to open files
  Unix programs expect a standard set of open file descriptors

•  Standard in (stdin)
•  Standard out (stdout)
•  Standard error (stderr)

  These may or may not be attached to the console. A calling
program can redirect input and output.
•  myprog < infile > outfile

Copyright Ronald W. Ritchey 2008, All Rights Reserved
19

File Descriptors

  stdin,stdout, and stderr are associated with particular file
descriptor numbers.

  An attacker may induce unexpected results by closing a
standard file descriptor prior to starting a program.
•  Ex:

Attacker closes stdout.
Program opens a file.
The program is assigned the same fd position as stdout.
All printf’s etc. in program will be written to the open file.

  Note: This does not work with recent Unix systems

Copyright Ronald W. Ritchey 2008, All Rights Reserved
20

File Descriptor Recommendations

  Do not assume that stdin, stdout, stderr are connected to a
console. It is the nature of Unix that these file descriptors are
easily reset.

  Confirm that stdin, stdout, stderr do not equal any file
descriptors that you open.
•  This may be considered a bit paranoid as Linux, Solaris, probably

others open standard fds on high numbered file descriptors.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
21

File Contents

  Trusted File - File assumed to be protected from access
•  Must verify that file is not accessible by non-authorized users.

  Untrusted File - File can be modified by untrusted users.
•  Must verify all contents of file before use

Copyright Ronald W. Ritchey 2008, All Rights Reserved
22

Other Inputs

  All input that your program must rely on should be carefully
checked for validity
•  Current Directory
•  Signals
•  Maps
•  Pipes
•  IPC
•  etc

Copyright Ronald W. Ritchey 2008, All Rights Reserved
23

Alternate character encoding

  Some programs/libraries can represent the exact same strings
using different inputs
•  Web URL encoding

-  “abc def” = “abc%20def”
•  UTF-8

-  2F 2E 2E 2F (“/../”) = 2F C0 AE 2E 2F

  Must exercise extreme caution when attempting to determine
validity

Copyright Ronald W. Ritchey 2008, All Rights Reserved
24

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Minor Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
25

Different variable types require different
validation approaches: Numeric

Variable
Type Approach

Numeric General approach is to check both max and min values

Signed Negative and positive values are allowed

Unsigned Insure that min value is >= 0

Integer Whole numbers only. Rounding may be acceptable in some applications.

Float Fractional values allowed

Size Regardless of integer vs. float, need to make sure max and min values take the
underlying variable size into account. Note: This may vary based upon the
platform the code is running on so checks may need to be made based upon run-
time or compile time values.

Range Values should be restricted to the max / min that is reasonable for the
applications use of the variable.

Future use
restrictions

Insure that you check that the value provided will not cause out of range or divide
by zero issues in future uses of the variable

Copyright Ronald W. Ritchey 2008, All Rights Reserved
26

Different variable types require different
validation approaches: Strings

Variable Type Approach
Bounded General approach is to whitelist the possible values

Enumerated
List

Check input against whitelist (e.g. list of valid values) before accepting.
Alternatively, map acceptable values against integer range.

Structured
input

When accepting input that fits a particular type (e.g. phone, ssn), pattern
match the input against a template that only matches that data

Grammar Use lexical analysis and specified grammar to ensure input is syntactically
correct.

Unbounded Much more difficult to manage. Avoid passing any unbounded data into any
executing environments (e.g. shell scripts, SQL calls). This includes avoiding
returning the data to environments that “render” such as browsers.

Size Must ensure that you do not accept more characters than you have allocated
for input storage. This includes languages that auto-resize strings as this
could still be used for a resource consumption (e.g. DoS) attack.

Copyright Ronald W. Ritchey 2008, All Rights Reserved
27

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Minor Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
28

Use strong validation

  Default deny much easier to enforce
•  Allowing only input that matches a formal definition of correctness

ensures that your application will not accept bad data
-  E.g. Only allow integers values from 1 to 10
-  Only allow the set (“Red”, “Green”, “Blue”)

  Default allow places often insurmountable definition difficulties
on the program
•  The need to define what bad looks like is very difficult

-  E.g. Do not allow the value “false”. What if the input if
“falfalsese”?

-  E.g. Do not allow metacharacters. Don’t pass quote character to
SQL. What about semicolon?

Copyright Ronald W. Ritchey 2008, All Rights Reserved
29

Whitelisting – Indirect Selection

  Map restricted integer
range to list of valid
values. Accept integer
and then validate it is
within this range.

1 File
2 Edit
3 View
Enter Selection (1-3):

Integer MakeChoice(String s) {
 x = Integer.parseInt(s);
 if (x < 1 || x > 3) {
 throw new NumberFormatException
 ("Value of must be between 1 and 3");
 }
 return x;
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
30

Whitelisting -- Enumeration

  Define fixed set of
valid values. Verify
that the input
exactly matches this
input

Enter command (File, Edit, View):

String MakeChoice(String s) {
 if (s.equalsIgnoreCase(“File”) return s;
 if (s.equalsIgnoreCase(“Edit”) return s;
 if (s.equalsIgnoreCase(“View”) return s;

 throw new StringFormatException
 ("Value must be either File, Edit, or
View");
 }
}

Copyright Ronald W. Ritchey 2008, All Rights Reserved
31

Whitelisting -- Regular Expressions

  Def: A string that describes a pattern
  A powerful syntax for expressing the format of strings
  A great way to validate the format of input
  Example:

•  If input is a standard FAT file name the following regular expression could be
used to verify that the input is in the correct format.

Rule for FAT filename is from one to eight alphanumeric characters optionally
followed by a period and an additional one to three alphanumeric characters.

Regular Expression: ^[a-zA-Z0-9]{1,8}(\.[a-zA-Z0-9]{1,3})?$

-  Abc matches
-  Abc. fails
-  Abc.def matches
-  Abc.defg fails

Copyright Ronald W. Ritchey 2008, All Rights Reserved
32

Format of a Regular Expression

  Consist of branches separated by a |
•  Each branch is a possible match pattern
•  Ex: “abc | def” will match the strings abc or def

  Each branch consists of one or more pieces concatenated
together

  A piece is composed of an atom possibly followed by a range
indicator or bound
•  Ex: a*, a{1,3}, (abc)?, [abc]+

Copyright Ronald W. Ritchey 2008, All Rights Reserved
33

Bounds

  A bound is used to indicate how many times a character can
match a given atom

  Several ways to represent bounds
•  * - matches 0 to many occurrences
•  + - matches 1 to many occurrences
•  ? - matches 0 or 1 occurrences
•  {x} - matches x occurrences (where x is an integer value)
•  {x, } - matches at least x occurrences
•  {x, y} - matches from x to y occurrences

Copyright Ronald W. Ritchey 2008, All Rights Reserved
34

Atoms

  Simplest form is a single character
  Can be an embedded regular expression

•  ([abc]{1,3}|xyz)

  Can represent the empty set
•  ()

  Special atoms
•  ‘.’ - match any single character
•  ‘\’ - escapes reserved characters
•  ‘^’ - matches beginning of line
•  ‘$’ - matches end of line

Copyright Ronald W. Ritchey 2008, All Rights Reserved
35

Atoms - Bracket Expressions

  A list of characters enclosed in []. The atom matches any
single character enclosed in the brackets (with the exception
of collating classes)
•  [abcde] - matches ‘a’ or ‘b’ or ‘d’ but not ‘x’

  Can include ranges
•  [a-z] - matches any lower case letter
•  [a-zA-Z] matches any upper and lower case letter

Copyright Ronald W. Ritchey 2008, All Rights Reserved
36

Atom - Metacharacters

  The characters ^.[$()|*+?{\ have special meaning in regular
expressions

  To include them in an atom, they must be escaped using the ‘\’
character.
•  Ex: the Regular Expression

[CDE]:\\WINNT

must be used to match the string

C:\WINNT

Copyright Ronald W. Ritchey 2008, All Rights Reserved
37

Simple Examples

  An up to a 15 character string
•  .{0,15}

•  Ex:
 a, bkd, 129s, (103/, 12938810a!2091992 matches
 Abcdefg123456790 does not

  A simple George Mason University class identifier
•  [A-Z]{2,4} {0,2}[1-9][0-9]{2}

•  Ex:
 SWE 699, ABCD392, CS 405 match
 SWESD493, CS 039, cs 405 do not

Copyright Ronald W. Ritchey 2008, All Rights Reserved
38

Some more complex examples

  Name (last, first)
•  ^[A-Z][a-zA-Z]*[-’]?[a-zA-Z]+, [a-zA-Z]+$

•  Ex:
 O’Mally, Charles or Hilton-Bilbrey, Jennifer match
 Ammann, Paul Ph.d. does not

  Date in (mm/dd/yyyy)
•  ^(1[012]|[1-9])/(3[01]|[12][0-9]|[1-9])/[1-9][0-9]{3}$

•  Ex:
 1/2/2001, 12/31/1999, 2/30/9020 match
 01/2/2001, 1/32/2001, 1/15/02 does not

Copyright Ronald W. Ritchey 2008, All Rights Reserved
39

Some more complex examples

  A US telephone number
•  ^\([1-9][0-9]{2}\) [1-9][0-9]{2}-[0-9]{4}$

•  Ex:
(703) 993-1000, (159) 302-1029, (400) 100-2000 match
(011) 939-1999, (123) 020-0101, (23) 293-2199 do not

Copyright Ronald W. Ritchey 2008, All Rights Reserved
40

Implementing REs in C

  Two main functions to call
•  regcomp - used to compile a regular expression into a form that can be

used in subsequent calls to regexec
•  regexec - matches a null terminated string against a precompiled regular

expression
  Two maintenance functions

•  regerror - turns the error codes returned by regcomp and regex into strings
•  regfree - frees up memory allocated in the regcomp call

Copyright Ronald W. Ritchey 2008, All Rights Reserved
41

regcomp

#include <regex.h>

int regcomp(regex_t *preg, const char *regex, int cflags);

  preg a ptr to a structure to hold the compiled RE
  regex a string that contains the RE

  cflags set options for the pattern
•  REG_ICASE Case insensitive setting
•  REG_NOSUB regcomp will not provide copies of substring matches
•  REG_NEWLINE wildcards do not match new line characters

Copyright Ronald W. Ritchey 2008, All Rights Reserved
42

regexec

#include <regex.h>

int regexec(const regex_t *preg, const char *string, size_t
nmatch, regmatch_t pmatch[], int, eflags);

  string the string to match against the RE
  nmatch, pmatch used to report substring match info
  eflags used when passing a partial string

 when you do not want a beginning
 of line or end of line match

Copyright Ronald W. Ritchey 2008, All Rights Reserved
43

Code Example

Code snippet:
// compile regex expressions

res = regcomp(pattern, “[abc]{1,3}", REG_EXTENDED|REG_NOSUB);

// Use compiled regex to test input value “aa”

res = regexec(pattern, “aa” , 0, NULL, 0);

if (res) printf(“aa matched\n”);

 else printf(“aa failed\n”);

// Use compiled regex to test input value “ad”

res = regexec(pattern, “ad” , 0, NULL, 0);

if (res) printf(“ad matched\n”);

 else printf(“ad failed\n”);

Results:
aa matched
ad failed

Copyright Ronald W. Ritchey 2008, All Rights Reserved
44

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
45

Be very careful with external command parsers

  Using user input to construct command string that will be
passed to external program for processing
•  SQL databases
•  Shell commands
•  Interpreted command processors (e.g Perl, Awk, Bash)
•  Browsers

  Special care must be used to prevent user from including
commands in input variables!
•  With SQL use of parameterized queries

-  Placeholders
-  Store procedures

•  With other systems strict validation must be performed
-  Avoid use of blacklisting

Copyright Ronald W. Ritchey 2008, All Rights Reserved
46

Other best practices

  Identify all sources of input and…
  Validate ALL input
  Use strong validation

•  Default deny not default allow

  Do not return invalid values to user!
  Create validation layers that are used across the entire system

to enforce consistent input validation
  Consider output validation when robust input validation is not

possible

Copyright Ronald W. Ritchey 2008, All Rights Reserved
47

Today’s Agenda

  Example of the value of good input parsing
  Sources of Input
  Types of Input
  Validation Methods
  Best practices
  Minor Assignment 2

Copyright Ronald W. Ritchey 2008, All Rights Reserved
48

Minor Assignment Two
  Task: Produce a financial program that tracks the balances of

multiple users and supports multiple currencies.
  Detail: Produce a command-line driven financial calculator that

supports multiple currencies. The program should be capable of
adding and subtracting values from a user’s account. The
program should handle conversion of the currencies prior to the
arithmetic operation. The program should include commands:
•  ADDUSER <Username> <CurrencyType> - Add username to the

database. Set user’s preferred currency to CurrencyType
•  SETCUR <Username> <CurrencyType> - Change username’s currency

type to currency. Convert current balance into new currency.
•  DELUSER <Username> - Remove user from the database
•  [ADD|SUB] <Username> <currency value1> - Add or remove amount from

user’s account. Currency Value can be from any of the supported
currency types.

•  MAINT – Allow currency conversion data to be entered (or read in)

Copyright Ronald W. Ritchey 2008, All Rights Reserved
49

Minor Assignment Two (cont)
  Create regular expressions to validate all input to include

commands, usernames, currency types, and currency values.
For currency values, validation should be consistent with the
standards used to write numbers in the currency being used.
(e.g. $3,150.02, £10.52, etc.). Be sure to document your
assumptions for formats in your report.

  Accepting ambiguous currency values is acceptable as long as
you handle the ambiguity reasonably

  You must accept at least three unique currencies (e.g. USD, UK
Pound, Euro). You must include functions that allow conversion
values to be input for the currencies that you will support.

  You must gracefully reject any attempts to provide invalid data.
  The database of user accounts should persist between

executions of the program.
  Permissible languages: C/C++, Java, Other with permission of

instructor
  Due Date: Sept 29th

50
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Next Thursday’s Class

Buffer Overflows

51
Copyright Ronald W. Ritchey 2008, All Rights Reserved

Questions?

